Abstract
alpha-Tocopherol transfer protein (alpha TTP), which specifically binds this vitamin and enhances its transfer between separate membranes, was previously isolated from rat liver cytosol. In the current study we demonstrated the presence of alpha TTP in human liver by isolating its cDNA from a human liver cDNA library. The cDNA for human alpha TTP predicts 278 amino acids with a calculated molecular mass of 31,749, and the sequence exhibits 94% similarity with rat alpha TTP at the amino acid level. The recombinant human alpha TTP expressed in Escherichia coli exhibits both alpha-tocopherol transfer activity in an in vitro assay and cross-reactivity to the anti-(rat alpha TTP) monoclonal antibody. Northern blot analysis revealed that human alpha TTP is expressed in the liver like rat alpha TTP. The human and rat alpha TTPs show structural similarity with other apparently unrelated lipid-binding/transfer proteins, i.e. retinaldehyde-binding protein present in retina, and yeast SEC14 protein, which possesses phosphatidylinositol/phosphatidylcholine transfer activity. Both Southern-blot hybridization of human-hamster somatic cell hybrid lines and fluorescence in situ hybridization revealed a single alpha TTP gene corresponding to the 8q13.1-13.3 region of chromosome 8, which is identical to the locus of a recently described clinical disorder, ataxia with selective vitamin E deficiency (AVED). The relationship between alpha TTP and AVED will be discussed.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bankaitis V. A., Aitken J. R., Cleves A. E., Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature. 1990 Oct 11;347(6293):561–562. doi: 10.1038/347561a0. [DOI] [PubMed] [Google Scholar]
- Ben Hamida C., Doerflinger N., Belal S., Linder C., Reutenauer L., Dib C., Gyapay G., Vignal A., Le Paslier D., Cohen D. Localization of Friedreich ataxia phenotype with selective vitamin E deficiency to chromosome 8q by homozygosity mapping. Nat Genet. 1993 Oct;5(2):195–200. doi: 10.1038/ng1093-195. [DOI] [PubMed] [Google Scholar]
- Ben Hamida M., Belal S., Sirugo G., Ben Hamida C., Panayides K., Ionannou P., Beckmann J., Mandel J. L., Hentati F., Koenig M. Friedreich's ataxia phenotype not linked to chromosome 9 and associated with selective autosomal recessive vitamin E deficiency in two inbred Tunisian families. Neurology. 1993 Nov;43(11):2179–2183. doi: 10.1212/wnl.43.11.2179. [DOI] [PubMed] [Google Scholar]
- Bloj B., Zilversmit D. B. Rat liver proteins capable of transferring phosphatidylethanolamine. Purification and transfer activity for other phospholipids and cholesterol. J Biol Chem. 1977 Mar 10;252(5):1613–1619. [PubMed] [Google Scholar]
- Burck U., Goebel H. H., Kuhlendahl H. D., Meier C., Goebel K. M. Neuromyopathy and vitamin E deficiency in man. Neuropediatrics. 1981 Aug;12(3):267–278. doi: 10.1055/s-2008-1059657. [DOI] [PubMed] [Google Scholar]
- Catignani G. L. An alpha-tocopherol binding protein in rat liver cytoplasm. Biochem Biophys Res Commun. 1975 Nov 3;67(1):66–72. doi: 10.1016/0006-291x(75)90283-1. [DOI] [PubMed] [Google Scholar]
- Cleves A. E., McGee T. P., Whitters E. A., Champion K. M., Aitken J. R., Dowhan W., Goebl M., Bankaitis V. A. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell. 1991 Feb 22;64(4):789–800. doi: 10.1016/0092-8674(91)90508-v. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
- Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding A. E., Matthews S., Jones S., Ellis C. J., Booth I. W., Muller D. P. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med. 1985 Jul 4;313(1):32–35. doi: 10.1056/NEJM198507043130107. [DOI] [PubMed] [Google Scholar]
- Kayden H. J., Traber M. G. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. J Lipid Res. 1993 Mar;34(3):343–358. [PubMed] [Google Scholar]
- Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krendel D. A., Gilchrist J. M., Johnson A. O., Bossen E. H. Isolated deficiency of vitamin E with progressive neurologic deterioration. Neurology. 1987 Mar;37(3):538–540. doi: 10.1212/wnl.37.3.538. [DOI] [PubMed] [Google Scholar]
- Kuroki M., Murakami M., Wakisaka M., Ikeda S., Oikawa S., Oshima T., Nakazato H., Kosaki G., Matsuoka Y. Immunoreactivity of recombinant carcinoembryonic antigen proteins expressed in Escherichia coli. Immunol Invest. 1992 Jun;21(3):241–257. doi: 10.3109/08820139209072262. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laplante P., Vanasse M., Michaud J., Geoffroy G., Brochu P. A progressive neurological syndrome associated with an isolated vitamin E deficiency. Can J Neurol Sci. 1984 Nov;11(4 Suppl):561–564. doi: 10.1017/s0317167100035046. [DOI] [PubMed] [Google Scholar]
- Lichter P., Ledbetter S. A., Ledbetter D. H., Ward D. C. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6634–6638. doi: 10.1073/pnas.87.17.6634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liscovitch M., Freese A., Blusztajn J. K., Wurtman R. J. High-performance liquid chromatography of water-soluble choline metabolites. Anal Biochem. 1985 Nov 15;151(1):182–187. doi: 10.1016/0003-2697(85)90069-7. [DOI] [PubMed] [Google Scholar]
- Mowri H., Nakagawa Y., Inoue K., Nojima S. Enhancement of the transfer of alpha-tocopherol between liposomes and mitochondria by rat-liver protein(s). Eur J Biochem. 1981 Jul;117(3):537–542. doi: 10.1111/j.1432-1033.1981.tb06370.x. [DOI] [PubMed] [Google Scholar]
- Murphy D. J., Mavis R. D. Membrane transfer of alpha-tocopherol. Influence of soluble alpha-tocopherol-binding factors from the liver, lung, heart, and brain of the rat. J Biol Chem. 1981 Oct 25;256(20):10464–10468. [PubMed] [Google Scholar]
- Nakayama K., Nakauchi H. An improved method to make sequential deletion mutants for DNA sequencing. Trends Genet. 1989 Oct;5(10):325–325. [PubMed] [Google Scholar]
- Saari J. C., Bredberg D. L. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. J Biol Chem. 1987 Jun 5;262(16):7618–7622. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato Y., Arai H., Miyata A., Tokita S., Yamamoto K., Tanabe T., Inoue K. Primary structure of alpha-tocopherol transfer protein from rat liver. Homology with cellular retinaldehyde-binding protein. J Biol Chem. 1993 Aug 25;268(24):17705–17710. [PubMed] [Google Scholar]
- Sato Y., Hagiwara K., Arai H., Inoue K. Purification and characterization of the alpha-tocopherol transfer protein from rat liver. FEBS Lett. 1991 Aug 19;288(1-2):41–45. doi: 10.1016/0014-5793(91)80999-j. [DOI] [PubMed] [Google Scholar]
- Skinner H. B., Alb J. G., Jr, Whitters E. A., Helmkamp G. M., Jr, Bankaitis V. A. Phospholipid transfer activity is relevant to but not sufficient for the essential function of the yeast SEC14 gene product. EMBO J. 1993 Dec;12(12):4775–4784. doi: 10.1002/j.1460-2075.1993.tb06166.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokol R. J., Kayden H. J., Bettis D. B., Traber M. G., Neville H., Ringel S., Wilson W. B., Stumpf D. A. Isolated vitamin E deficiency in the absence of fat malabsorption--familial and sporadic cases: characterization and investigation of causes. J Lab Clin Med. 1988 May;111(5):548–559. [PubMed] [Google Scholar]
- Takahashi E., Hori T., O'Connell P., Leppert M., White R. R-banding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum Genet. 1990 Nov;86(1):14–16. doi: 10.1007/BF00205165. [DOI] [PubMed] [Google Scholar]
- Traber M. G. Determinants of plasma vitamin E concentrations. Free Radic Biol Med. 1994 Feb;16(2):229–239. doi: 10.1016/0891-5849(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Traber M. G., Kayden H. J. Preferential incorporation of alpha-tocopherol vs gamma-tocopherol in human lipoproteins. Am J Clin Nutr. 1989 Mar;49(3):517–526. doi: 10.1093/ajcn/49.3.517. [DOI] [PubMed] [Google Scholar]
- Traber M. G., Sokol R. J., Burton G. W., Ingold K. U., Papas A. M., Huffaker J. E., Kayden H. J. Impaired ability of patients with familial isolated vitamin E deficiency to incorporate alpha-tocopherol into lipoproteins secreted by the liver. J Clin Invest. 1990 Feb;85(2):397–407. doi: 10.1172/JCI114452. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokota T., Wada Y., Furukawa T., Tsukagoshi H., Uchihara T., Watabiki S. Adult-onset spinocerebellar syndrome with idiopathic vitamin E deficiency. Ann Neurol. 1987 Jul;22(1):84–87. doi: 10.1002/ana.410220119. [DOI] [PubMed] [Google Scholar]