Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Jul 1;205(1):81–90. doi: 10.1042/bj2050081

Isolation and characterization of the major oligosaccharide of human platelet membrane glycoprotein GPIb.

P A Judson, D J Anstee, J R Clamp
PMCID: PMC1158449  PMID: 6215034

Abstract

Treatment of intact human platelets with chymotrypsin released a glycopolypeptide that was shown to be derived from the major membrane glycoprotein, GPIb. The glycopolypeptide contained 59% carbohydrate on a molar basis and was rich in serine, threonine and proline. Almost all the carbohydrate could be released from the glycopolypeptide by treatment with alkali in the presence of NaBH4. The major component (comprising 80% of the released sugar) was purified and shown to be a hexasaccharide containing sialic acid, galactose, N-acetylglucosamine and N-acetylgalactosaminitol in the molar ratios 2:2:1:1. Two possible structures for this hexasaccharide are proposed on the basis of the known biosynthetic pathways of mucus-type glycoproteins. Our data is consistent with the occurrence of an O-glycosidically linked oligosaccharide on one amino acid in four of the glycopolypeptide. These results suggest that glycoprotein Ib can best be described as a membrane-bound mucus-type glycoproteins. Our data are consistent with the occurrence of an O- in the process by which platelets adhere to the exposed subendothelium of damaged blood-vessel walls. The possible role of the glycopolypeptide portion of GPIb in this process was investigated. Neither the major oligosaccharide nor the glycopolypeptide itself inhibited ristocetin-induced platelet agglutination at the concentrations tested. It is suggested that the carbohydrate moieties of GPIb molecules at the cell surface interact to form a barrier to macromolecules. Such a barrier could play a major role in modulating platelet function.

Full text

PDF
81

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus. Br Med Bull. 1978 Jan;34(1):28–33. [PubMed] [Google Scholar]
  2. Anstee D. J., Mawby W. J., Tanner M. J. Abnormal blood-group-Ss-active sialoglycoproteins in the membrane of Miltenberger class III, IV and V human erythrocytes. Biochem J. 1979 Nov 1;183(2):193–203. doi: 10.1042/bj1830193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barber A. J., Jamieson G. A. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem. 1970 Dec 10;245(23):6357–6365. [PubMed] [Google Scholar]
  4. Barber A. J., Jamieson G. A. Isolation of glycopeptides from low- and high-density platelet plasma membranes. Biochemistry. 1971 Dec 7;10(25):4711–4717. doi: 10.1021/bi00801a018. [DOI] [PubMed] [Google Scholar]
  5. Clamp J. R. A gas-liquid chromatographic approach to the analysis of carbohydrates. Biochem Soc Trans. 1977;5(6):1693–1695. doi: 10.1042/bst0051693. [DOI] [PubMed] [Google Scholar]
  6. Clemetson K. J., Naim H. Y., Lüscher E. F. Relationship between glycocalicin and glycoprotein Ib of human platelets. Proc Natl Acad Sci U S A. 1981 May;78(5):2712–2716. doi: 10.1073/pnas.78.5.2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper H. A., Clemetson K. J., Lüscher E. F. Human platelet membrane receptor for bovine von Willebrand factor (platelet aggregating factor): an integral membrane glycoprotein. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1069–1073. doi: 10.1073/pnas.76.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davey M. G., Lüscher E. F. Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature. 1967 Dec 2;216(5118):857–858. doi: 10.1038/216857a0. [DOI] [PubMed] [Google Scholar]
  9. Dische Z., Danilchenko A. Modifications of two color reactions of hexoses with cysteine and sulfuric acid. Anal Biochem. 1967 Oct;21(1):119–124. doi: 10.1016/0003-2697(67)90090-5. [DOI] [PubMed] [Google Scholar]
  10. Edwards P. A. Is mucus a selective barrier to macromolecules? Br Med Bull. 1978 Jan;34(1):55–56. doi: 10.1093/oxfordjournals.bmb.a071459. [DOI] [PubMed] [Google Scholar]
  11. Emerson W. A., Kornfeld S. Characterization of the oligosaccharide units of the bovine erythrocyte membrane glycoprotein. Biochemistry. 1976 Apr 20;15(8):1697–1703. doi: 10.1021/bi00653a017. [DOI] [PubMed] [Google Scholar]
  12. Farrar G. H., Harrison R. Isolation and structural characterization of alkali-labile oligosaccharides from bovine milk-fat-globule membrane. Biochem J. 1978 Jun 1;171(3):549–557. doi: 10.1042/bj1710549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glöckner W. M., Kaulen H. D., Uhlenbruck G. Immunochemical detection of the Thomsen-Friedenreich antigen (T-antigen) on platelet plasma membranes. Thromb Haemost. 1978 Feb 28;39(1):186–192. [PubMed] [Google Scholar]
  14. Goodwin S. D., Watkins W. M. The peptide moiety of blood-group-specific glycoproteins. Some amino-acid sequences in the regions carrying the carbohydrate chains. Eur J Biochem. 1974 Sep 1;47(2):371–382. doi: 10.1111/j.1432-1033.1974.tb03702.x. [DOI] [PubMed] [Google Scholar]
  15. HUMMEL B. C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol. 1959 Dec;37:1393–1399. [PubMed] [Google Scholar]
  16. Humbel R., Collart M. Oligosaccharides in urine of patients with glycoprotein storage diseases. I. Rapid detection by thin-layer chromatography. Clin Chim Acta. 1975 Apr 16;60(2):143–145. doi: 10.1016/0009-8981(75)90119-9. [DOI] [PubMed] [Google Scholar]
  17. Jenkins C. S., Phillips D. R., Clemetson K. J., Meyer D., Larrieu M. J., Lüscher E. F. Platelet membrane glycoproteins implicated in ristocetin-induced aggregation. Studies of the proteins on platelets from patients with Bernard-Soulier syndrome and von Willebrand's disease. J Clin Invest. 1976 Jan;57(1):112–124. doi: 10.1172/JCI108251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lotan R., Skutelsky E., Danon D., Sharon N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem. 1975 Nov 10;250(21):8518–8523. [PubMed] [Google Scholar]
  20. Nurden A. T., Caen J. P. Membrane glycoproteins and human platelet function. Br J Haematol. 1978 Feb;38(2):155–160. doi: 10.1111/j.1365-2141.1978.tb01031.x. [DOI] [PubMed] [Google Scholar]
  21. Okumura I., Lombart C., Jamieson G. A. Platelet glycocalicin. II. Purification and characterization. J Biol Chem. 1976 Oct 10;251(19):5950–5955. [PubMed] [Google Scholar]
  22. Okumura T., Jamieson G. A. Platelet glycocalicin. I. Orientation of glycoproteins of the human platelet surface. J Biol Chem. 1976 Oct 10;251(19):5944–5949. [PubMed] [Google Scholar]
  23. Okumura T., Jamieson G. A. Platelet glycocalicin: a single receptor for platelet aggregation induced by thrombin or ristocetin. Thromb Res. 1976 May;8(5):701–706. doi: 10.1016/0049-3848(76)90250-4. [DOI] [PubMed] [Google Scholar]
  24. Pepper D. S., Jamieson G. A. Isolation of a macroglycopeptide from human platelets. Biochemistry. 1970 Sep 15;9(19):3706–3713. doi: 10.1021/bi00821a009. [DOI] [PubMed] [Google Scholar]
  25. Pereira M. E., Kabat E. A., Lotan R., Sharon N. Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydr Res. 1976 Oct;51(1):107–118. doi: 10.1016/s0008-6215(00)84040-9. [DOI] [PubMed] [Google Scholar]
  26. Phillips D. R., Agin P. P. Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem. 1977 Mar 25;252(6):2121–2126. [PubMed] [Google Scholar]
  27. Phillips D. R. An evaluation of membrane glycoproteins in platelet adhesion and aggregation. Prog Hemost Thromb. 1980;5:81–109. [PubMed] [Google Scholar]
  28. Phillips D. R., Jakábová M. Ca2+-dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca2+. J Biol Chem. 1977 Aug 25;252(16):5602–5605. [PubMed] [Google Scholar]
  29. Podolsak B. Effects of thrombin, chymotrypsin and aggregated gamma-globulins on the proteins of the human platelet membrane. Thromb Haemost. 1977 Jun 30;37(3):396–406. [PubMed] [Google Scholar]
  30. Reid L., Clamp J. R. The biochemical and histochemical nomenclature of mucus. Br Med Bull. 1978 Jan;34(1):5–8. doi: 10.1093/oxfordjournals.bmb.a071458. [DOI] [PubMed] [Google Scholar]
  31. Rovis L., Anderson B., Kabat E. A., Gruenzo F., Liao J. Structures of oligosaccharides produced by base--borohydride degradation of human ovarian cyst blood group H, Le-b and Le-a active glycoproteins. Biochemistry. 1973 Dec 18;12(26):5340–5354. doi: 10.1021/bi00750a018. [DOI] [PubMed] [Google Scholar]
  32. SVENNERHOLM L. Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta. 1957 Jun;24(3):604–611. doi: 10.1016/0006-3002(57)90254-8. [DOI] [PubMed] [Google Scholar]
  33. Solum N. O., Hagen I., Filion-Myklebust C., Stabaek T. Platelet glycocalicin. Its membrane association and solubilization in aqueous media. Biochim Biophys Acta. 1980 Apr 10;597(2):235–246. doi: 10.1016/0005-2736(80)90102-9. [DOI] [PubMed] [Google Scholar]
  34. Tanner M. J., Anstee D. J. A method for the direct demonstration of the lectin-binding components of the human erythrocyte membrane. Biochem J. 1976 Feb 1;153(2):265–270. doi: 10.1042/bj1530265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tanner M. J., Anstee D. J., Mawby W. J. A new human erythrocyte variant (Ph) containing an abnormal membrane sialoglycoprotein. Biochem J. 1980 May 1;187(2):493–500. doi: 10.1042/bj1870493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Terao T., Irimura T., Osawa T. Purification and characterization of a hemagglutinin from Arachis hypogeae. Hoppe Seylers Z Physiol Chem. 1975 Nov;356(11):1685–1692. doi: 10.1515/bchm2.1975.356.2.1685. [DOI] [PubMed] [Google Scholar]
  37. Thomas D. B., Winzler R. J. Structural studies on human erythrocyte glycoproteins. Alkali-labile oligosaccharides. J Biol Chem. 1969 Nov 10;244(21):5943–5946. [PubMed] [Google Scholar]
  38. Uhlenbruck G., Pardoe G. I., Bird G. W. On the specificity of lectins with a broad agglutination spectrum. II. Studies on the nature of the T-antigen and the specific receptors for the lectin of Arachis hypogoea (ground-nut). Z Immunitatsforsch Allerg Klin Immunol. 1969 Nov;138(5):423–433. [PubMed] [Google Scholar]
  39. Yoshima H., Furthmayr H., Kobata A. Structures of the asparagine-linked sugar chains of glycophorin A. J Biol Chem. 1980 Oct 25;255(20):9713–9718. [PubMed] [Google Scholar]
  40. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES