Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2000 Dec;79(6):3009–3018. doi: 10.1016/S0006-3495(00)76537-4

Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+)

U V Nägerl 1, D Novo 1, I Mody 1, J L Vergara 1
PMCID: PMC1301179  PMID: 11106608

Abstract

We have used UV flash photolysis of DM-nitrophen in combination with model-based analysis of Oregon Green 488 BAPTA-5N fluorescence transients to study the kinetics of Ca(2+) binding to calbindin-D(28K). The experiments used saturated DM-nitrophen at a [Ca(2+)] of 1.5 microM. Under these conditions, UV laser flashes produced rapid steplike increases in [Ca(2+)] in the absence of calbindin-D(28K), and in its presence the decay of the flash-induced fluorescence was due solely to the Ca(2+) buffering by the protein. We developed a novel method for kinetic parameter derivation and used the synthetic Ca(2+) buffer EGTA to confirm its validity. We provide evidence that calbindin-D(28K) binds Ca(2+) in at least two distinct kinetic patterns, one arising from high-affinity sites that bind Ca(2+) with a k(on) comparable to that of EGTA (i.e., approximately 1 x 10(7) M(-1) s(-1)) and another with lower affinity and an approximately eightfold faster k(on). In view of the inability of conventional approaches to adequately resolve rapid Ca(2+) binding kinetics of Ca(2+) buffers, this method promises to be highly valuable for studying the Ca(2+) binding properties of other biologically important Ca(2+) binding proteins.

Full Text

The Full Text of this article is available as a PDF (127.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler E. M., Augustine G. J., Duffy S. N., Charlton M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci. 1991 Jun;11(6):1496–1507. doi: 10.1523/JNEUROSCI.11-06-01496.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Airaksinen M. S., Eilers J., Garaschuk O., Thoenen H., Konnerth A., Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1488–1493. doi: 10.1073/pnas.94.4.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atluri P. P., Regehr W. G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci. 1996 Sep 15;16(18):5661–5671. doi: 10.1523/JNEUROSCI.16-18-05661.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ayer R. K., Jr, Zucker R. S. Magnesium binding to DM-nitrophen and its effect on the photorelease of calcium. Biophys J. 1999 Dec;77(6):3384–3393. doi: 10.1016/S0006-3495(99)77170-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baimbridge K. G. Calcium-binding proteins in the dentate gyrus. Epilepsy Res Suppl. 1992;7:211–220. [PubMed] [Google Scholar]
  6. Baudet S., Hove-Madsen L., Bers D. M. How to make and use calcium-specific mini- and microelectrodes. Methods Cell Biol. 1994;40:93–113. [PubMed] [Google Scholar]
  7. Bayley P., Ahlström P., Martin S. R., Forsen S. The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies. Biochem Biophys Res Commun. 1984 Apr 16;120(1):185–191. doi: 10.1016/0006-291x(84)91431-1. [DOI] [PubMed] [Google Scholar]
  8. Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
  9. Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
  10. Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375–475. doi: 10.1016/0306-4522(90)90091-h. [DOI] [PubMed] [Google Scholar]
  11. Chen C., Regehr W. G. Contributions of residual calcium to fast synaptic transmission. J Neurosci. 1999 Aug 1;19(15):6257–6266. doi: 10.1523/JNEUROSCI.19-15-06257.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cheung W. T., Richards D. E., Rogers J. H. Calcium binding by chick calretinin and rat calbindin D28k synthesised in bacteria. Eur J Biochem. 1993 Jul 15;215(2):401–410. doi: 10.1111/j.1432-1033.1993.tb18047.x. [DOI] [PubMed] [Google Scholar]
  13. Davis A. F., Bai J., Fasshauer D., Wolowick M. J., Lewis J. L., Chapman E. R. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron. 1999 Oct;24(2):363–376. doi: 10.1016/s0896-6273(00)80850-8. [DOI] [PubMed] [Google Scholar]
  14. Davis T. N. What's new with calcium? Cell. 1992 Nov 13;71(4):557–564. doi: 10.1016/0092-8674(92)90590-9. [DOI] [PubMed] [Google Scholar]
  15. DelPrincipe F., Egger M., Ellis-Davies G. C., Niggli E. Two-photon and UV-laser flash photolysis of the Ca2+ cage, dimethoxynitrophenyl-EGTA-4. Cell Calcium. 1999 Jan;25(1):85–91. doi: 10.1054/ceca.1998.0009. [DOI] [PubMed] [Google Scholar]
  16. DiGregorio D. A., Peskoff A., Vergara J. L. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Neurosci. 1999 Sep 15;19(18):7846–7859. doi: 10.1523/JNEUROSCI.19-18-07846.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DiGregorio D. A., Vergara J. L. Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction. J Physiol. 1997 Dec 15;505(Pt 3):585–592. doi: 10.1111/j.1469-7793.1997.585ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DiPolo R., Rojas H., Vergara J., Lopez R., Caputo C. Measurements of intracellular ionized calcium in squid giant axons using calcium-selective electrodes. Biochim Biophys Acta. 1983 Mar 9;728(3):311–318. doi: 10.1016/0005-2736(83)90500-x. [DOI] [PubMed] [Google Scholar]
  19. Ellis-Davies G. C., Kaplan J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):187–191. doi: 10.1073/pnas.91.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Escobar A. L., Cifuentes F., Vergara J. L. Detection of Ca(2+)-transients elicited by flash photolysis of DM-nitrophen with a fast calcium indicator. FEBS Lett. 1995 May 15;364(3):335–338. doi: 10.1016/0014-5793(95)00425-9. [DOI] [PubMed] [Google Scholar]
  21. Escobar A. L., Velez P., Kim A. M., Cifuentes F., Fill M., Vergara J. L. Kinetic properties of DM-nitrophen and calcium indicators: rapid transient response to flash photolysis. Pflugers Arch. 1997 Sep;434(5):615–631. doi: 10.1007/s004240050444. [DOI] [PubMed] [Google Scholar]
  22. Fierro L., Llano I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol. 1996 Nov 1;496(Pt 3):617–625. doi: 10.1113/jphysiol.1996.sp021713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gross M. D., Gosnell M., Tsarbopoulos A., Hunziker W. A functional and degenerate pair of EF hands contains the very high affinity calcium-binding site of calbindin-D28K. J Biol Chem. 1993 Oct 5;268(28):20917–20922. [PubMed] [Google Scholar]
  24. Gross M. D., Kumar R., Hunziker W. Expression in Escherichia coli of full-length and mutant rat brain calbindin D28. Comparison with the purified native protein. J Biol Chem. 1988 Oct 5;263(28):14426–14432. [PubMed] [Google Scholar]
  25. Gross M. D., Nelsestuen G. L., Kumar R. Observations on the binding of lanthanides and calcium to vitamin D-dependent chick intestinal calcium-binding protein. Implications regarding calcium-binding protein function. J Biol Chem. 1987 May 15;262(14):6539–6545. [PubMed] [Google Scholar]
  26. Harrison S. M., Bers D. M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta. 1987 Aug 13;925(2):133–143. doi: 10.1016/0304-4165(87)90102-4. [DOI] [PubMed] [Google Scholar]
  27. Hellam D. C., Podolsky R. J. Force measurements in skinned muscle fibres. J Physiol. 1969 Feb;200(3):807–819. doi: 10.1113/jphysiol.1969.sp008723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hollingworth S., Zhao M., Baylor S. M. The amplitude and time course of the myoplasmic free [Ca2+] transient in fast-twitch fibers of mouse muscle. J Gen Physiol. 1996 Nov;108(5):455–469. doi: 10.1085/jgp.108.5.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kao J. P., Tsien R. Y. Ca2+ binding kinetics of fura-2 and azo-1 from temperature-jump relaxation measurements. Biophys J. 1988 Apr;53(4):635–639. doi: 10.1016/S0006-3495(88)83142-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kaplan J. H., Ellis-Davies G. C. Photolabile chelators for the rapid photorelease of divalent cations. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6571–6575. doi: 10.1073/pnas.85.17.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kawasaki H., Nakayama S., Kretsinger R. H. Classification and evolution of EF-hand proteins. Biometals. 1998 Dec;11(4):277–295. doi: 10.1023/a:1009282307967. [DOI] [PubMed] [Google Scholar]
  32. Kennedy M. B. Regulation of neuronal function by calcium. Trends Neurosci. 1989 Nov;12(11):417–420. doi: 10.1016/0166-2236(89)90089-1. [DOI] [PubMed] [Google Scholar]
  33. Klapstein G. J., Vietla S., Lieberman D. N., Gray P. A., Airaksinen M. S., Thoenen H., Meyer M., Mody I. Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience. 1998 Jul;85(2):361–373. doi: 10.1016/s0306-4522(97)00632-5. [DOI] [PubMed] [Google Scholar]
  34. Linse S., Chazin W. J. Quantitative measurements of the cooperativity in an EF-hand protein with sequential calcium binding. Protein Sci. 1995 Jun;4(6):1038–1044. doi: 10.1002/pro.5560040602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Martin S. R., Linse S., Johansson C., Bayley P. M., Forsén S. Protein surface charges and Ca2+ binding to individual sites in calbindin D9k: stopped-flow studies. Biochemistry. 1990 May 1;29(17):4188–4193. doi: 10.1021/bi00469a023. [DOI] [PubMed] [Google Scholar]
  36. McGuigan J. A., Lüthi D., Buri A. Calcium buffer solutions and how to make them: a do it yourself guide. Can J Physiol Pharmacol. 1991 Nov;69(11):1733–1749. doi: 10.1139/y91-257. [DOI] [PubMed] [Google Scholar]
  37. Naraghi M. T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium. 1997 Oct;22(4):255–268. doi: 10.1016/s0143-4160(97)90064-6. [DOI] [PubMed] [Google Scholar]
  38. Neher E. Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium. 1998 Nov-Dec;24(5-6):345–357. doi: 10.1016/s0143-4160(98)90058-6. [DOI] [PubMed] [Google Scholar]
  39. Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron. 1998 Mar;20(3):389–399. doi: 10.1016/s0896-6273(00)80983-6. [DOI] [PubMed] [Google Scholar]
  40. Nägerl U. V., Mody I., Jeub M., Lie A. A., Elger C. E., Beck H. Surviving granule cells of the sclerotic human hippocampus have reduced Ca(2+) influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J Neurosci. 2000 Mar 1;20(5):1831–1836. doi: 10.1523/JNEUROSCI.20-05-01831.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pasti L., Carmignoto G., Pozzan T., Battini R., Ferrari S., Lally G., Emson P. C. Cellular calcium handling in brain slices from calbindin D28k-deficient mice. Neuroreport. 1999 Aug 2;10(11):2367–2372. doi: 10.1097/00001756-199908020-00027. [DOI] [PubMed] [Google Scholar]
  42. Smith P. D., Liesegang G. W., Berger R. L., Czerlinski G., Podolsky R. J. A stopped-flow investigation of calcium ion binding by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Anal Biochem. 1984 Nov 15;143(1):188–195. doi: 10.1016/0003-2697(84)90575-x. [DOI] [PubMed] [Google Scholar]
  43. Stern M. D. Buffering of calcium in the vicinity of a channel pore. Cell Calcium. 1992 Mar;13(3):183–192. doi: 10.1016/0143-4160(92)90046-u. [DOI] [PubMed] [Google Scholar]
  44. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  45. Veenstra T. D., Johnson K. L., Tomlinson A. J., Naylor S., Kumar R. Determination of calcium-binding sites in rat brain calbindin D28K by electrospray ionization mass spectrometry. Biochemistry. 1997 Mar 25;36(12):3535–3542. doi: 10.1021/bi9628329. [DOI] [PubMed] [Google Scholar]
  46. Vergara J., Delay M. The use of metallochromic Ca indicators in skeletal muscle. Cell Calcium. 1985 Apr;6(1-2):119–132. doi: 10.1016/0143-4160(85)90039-9. [DOI] [PubMed] [Google Scholar]
  47. Vergara J., DiFranco M. Imaging of calcium transients during excitation-contraction coupling in skeletal muscle fibers. Adv Exp Med Biol. 1992;311:227–236. doi: 10.1007/978-1-4615-3362-7_16. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES