Abstract
We have used UV flash photolysis of DM-nitrophen in combination with model-based analysis of Oregon Green 488 BAPTA-5N fluorescence transients to study the kinetics of Ca(2+) binding to calbindin-D(28K). The experiments used saturated DM-nitrophen at a [Ca(2+)] of 1.5 microM. Under these conditions, UV laser flashes produced rapid steplike increases in [Ca(2+)] in the absence of calbindin-D(28K), and in its presence the decay of the flash-induced fluorescence was due solely to the Ca(2+) buffering by the protein. We developed a novel method for kinetic parameter derivation and used the synthetic Ca(2+) buffer EGTA to confirm its validity. We provide evidence that calbindin-D(28K) binds Ca(2+) in at least two distinct kinetic patterns, one arising from high-affinity sites that bind Ca(2+) with a k(on) comparable to that of EGTA (i.e., approximately 1 x 10(7) M(-1) s(-1)) and another with lower affinity and an approximately eightfold faster k(on). In view of the inability of conventional approaches to adequately resolve rapid Ca(2+) binding kinetics of Ca(2+) buffers, this method promises to be highly valuable for studying the Ca(2+) binding properties of other biologically important Ca(2+) binding proteins.
Full Text
The Full Text of this article is available as a PDF (127.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler E. M., Augustine G. J., Duffy S. N., Charlton M. P. Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse. J Neurosci. 1991 Jun;11(6):1496–1507. doi: 10.1523/JNEUROSCI.11-06-01496.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Airaksinen M. S., Eilers J., Garaschuk O., Thoenen H., Konnerth A., Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1488–1493. doi: 10.1073/pnas.94.4.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atluri P. P., Regehr W. G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci. 1996 Sep 15;16(18):5661–5671. doi: 10.1523/JNEUROSCI.16-18-05661.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayer R. K., Jr, Zucker R. S. Magnesium binding to DM-nitrophen and its effect on the photorelease of calcium. Biophys J. 1999 Dec;77(6):3384–3393. doi: 10.1016/S0006-3495(99)77170-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baimbridge K. G. Calcium-binding proteins in the dentate gyrus. Epilepsy Res Suppl. 1992;7:211–220. [PubMed] [Google Scholar]
- Baudet S., Hove-Madsen L., Bers D. M. How to make and use calcium-specific mini- and microelectrodes. Methods Cell Biol. 1994;40:93–113. [PubMed] [Google Scholar]
- Bayley P., Ahlström P., Martin S. R., Forsen S. The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies. Biochem Biophys Res Commun. 1984 Apr 16;120(1):185–191. doi: 10.1016/0006-291x(84)91431-1. [DOI] [PubMed] [Google Scholar]
- Bers D. M. A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol. 1982 May;242(5):C404–C408. doi: 10.1152/ajpcell.1982.242.5.C404. [DOI] [PubMed] [Google Scholar]
- Bers D. M., Patton C. W., Nuccitelli R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 1994;40:3–29. doi: 10.1016/s0091-679x(08)61108-5. [DOI] [PubMed] [Google Scholar]
- Celio M. R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience. 1990;35(2):375–475. doi: 10.1016/0306-4522(90)90091-h. [DOI] [PubMed] [Google Scholar]
- Chen C., Regehr W. G. Contributions of residual calcium to fast synaptic transmission. J Neurosci. 1999 Aug 1;19(15):6257–6266. doi: 10.1523/JNEUROSCI.19-15-06257.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheung W. T., Richards D. E., Rogers J. H. Calcium binding by chick calretinin and rat calbindin D28k synthesised in bacteria. Eur J Biochem. 1993 Jul 15;215(2):401–410. doi: 10.1111/j.1432-1033.1993.tb18047.x. [DOI] [PubMed] [Google Scholar]
- Davis A. F., Bai J., Fasshauer D., Wolowick M. J., Lewis J. L., Chapman E. R. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron. 1999 Oct;24(2):363–376. doi: 10.1016/s0896-6273(00)80850-8. [DOI] [PubMed] [Google Scholar]
- Davis T. N. What's new with calcium? Cell. 1992 Nov 13;71(4):557–564. doi: 10.1016/0092-8674(92)90590-9. [DOI] [PubMed] [Google Scholar]
- DelPrincipe F., Egger M., Ellis-Davies G. C., Niggli E. Two-photon and UV-laser flash photolysis of the Ca2+ cage, dimethoxynitrophenyl-EGTA-4. Cell Calcium. 1999 Jan;25(1):85–91. doi: 10.1054/ceca.1998.0009. [DOI] [PubMed] [Google Scholar]
- DiGregorio D. A., Peskoff A., Vergara J. L. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Neurosci. 1999 Sep 15;19(18):7846–7859. doi: 10.1523/JNEUROSCI.19-18-07846.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiGregorio D. A., Vergara J. L. Localized detection of action potential-induced presynaptic calcium transients at a Xenopus neuromuscular junction. J Physiol. 1997 Dec 15;505(Pt 3):585–592. doi: 10.1111/j.1469-7793.1997.585ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DiPolo R., Rojas H., Vergara J., Lopez R., Caputo C. Measurements of intracellular ionized calcium in squid giant axons using calcium-selective electrodes. Biochim Biophys Acta. 1983 Mar 9;728(3):311–318. doi: 10.1016/0005-2736(83)90500-x. [DOI] [PubMed] [Google Scholar]
- Ellis-Davies G. C., Kaplan J. H. Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):187–191. doi: 10.1073/pnas.91.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escobar A. L., Cifuentes F., Vergara J. L. Detection of Ca(2+)-transients elicited by flash photolysis of DM-nitrophen with a fast calcium indicator. FEBS Lett. 1995 May 15;364(3):335–338. doi: 10.1016/0014-5793(95)00425-9. [DOI] [PubMed] [Google Scholar]
- Escobar A. L., Velez P., Kim A. M., Cifuentes F., Fill M., Vergara J. L. Kinetic properties of DM-nitrophen and calcium indicators: rapid transient response to flash photolysis. Pflugers Arch. 1997 Sep;434(5):615–631. doi: 10.1007/s004240050444. [DOI] [PubMed] [Google Scholar]
- Fierro L., Llano I. High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol. 1996 Nov 1;496(Pt 3):617–625. doi: 10.1113/jphysiol.1996.sp021713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M. D., Gosnell M., Tsarbopoulos A., Hunziker W. A functional and degenerate pair of EF hands contains the very high affinity calcium-binding site of calbindin-D28K. J Biol Chem. 1993 Oct 5;268(28):20917–20922. [PubMed] [Google Scholar]
- Gross M. D., Kumar R., Hunziker W. Expression in Escherichia coli of full-length and mutant rat brain calbindin D28. Comparison with the purified native protein. J Biol Chem. 1988 Oct 5;263(28):14426–14432. [PubMed] [Google Scholar]
- Gross M. D., Nelsestuen G. L., Kumar R. Observations on the binding of lanthanides and calcium to vitamin D-dependent chick intestinal calcium-binding protein. Implications regarding calcium-binding protein function. J Biol Chem. 1987 May 15;262(14):6539–6545. [PubMed] [Google Scholar]
- Harrison S. M., Bers D. M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim Biophys Acta. 1987 Aug 13;925(2):133–143. doi: 10.1016/0304-4165(87)90102-4. [DOI] [PubMed] [Google Scholar]
- Hellam D. C., Podolsky R. J. Force measurements in skinned muscle fibres. J Physiol. 1969 Feb;200(3):807–819. doi: 10.1113/jphysiol.1969.sp008723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hollingworth S., Zhao M., Baylor S. M. The amplitude and time course of the myoplasmic free [Ca2+] transient in fast-twitch fibers of mouse muscle. J Gen Physiol. 1996 Nov;108(5):455–469. doi: 10.1085/jgp.108.5.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao J. P., Tsien R. Y. Ca2+ binding kinetics of fura-2 and azo-1 from temperature-jump relaxation measurements. Biophys J. 1988 Apr;53(4):635–639. doi: 10.1016/S0006-3495(88)83142-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan J. H., Ellis-Davies G. C. Photolabile chelators for the rapid photorelease of divalent cations. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6571–6575. doi: 10.1073/pnas.85.17.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawasaki H., Nakayama S., Kretsinger R. H. Classification and evolution of EF-hand proteins. Biometals. 1998 Dec;11(4):277–295. doi: 10.1023/a:1009282307967. [DOI] [PubMed] [Google Scholar]
- Kennedy M. B. Regulation of neuronal function by calcium. Trends Neurosci. 1989 Nov;12(11):417–420. doi: 10.1016/0166-2236(89)90089-1. [DOI] [PubMed] [Google Scholar]
- Klapstein G. J., Vietla S., Lieberman D. N., Gray P. A., Airaksinen M. S., Thoenen H., Meyer M., Mody I. Calbindin-D28k fails to protect hippocampal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience. 1998 Jul;85(2):361–373. doi: 10.1016/s0306-4522(97)00632-5. [DOI] [PubMed] [Google Scholar]
- Linse S., Chazin W. J. Quantitative measurements of the cooperativity in an EF-hand protein with sequential calcium binding. Protein Sci. 1995 Jun;4(6):1038–1044. doi: 10.1002/pro.5560040602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin S. R., Linse S., Johansson C., Bayley P. M., Forsén S. Protein surface charges and Ca2+ binding to individual sites in calbindin D9k: stopped-flow studies. Biochemistry. 1990 May 1;29(17):4188–4193. doi: 10.1021/bi00469a023. [DOI] [PubMed] [Google Scholar]
- McGuigan J. A., Lüthi D., Buri A. Calcium buffer solutions and how to make them: a do it yourself guide. Can J Physiol Pharmacol. 1991 Nov;69(11):1733–1749. doi: 10.1139/y91-257. [DOI] [PubMed] [Google Scholar]
- Naraghi M. T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium. 1997 Oct;22(4):255–268. doi: 10.1016/s0143-4160(97)90064-6. [DOI] [PubMed] [Google Scholar]
- Neher E. Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium. 1998 Nov-Dec;24(5-6):345–357. doi: 10.1016/s0143-4160(98)90058-6. [DOI] [PubMed] [Google Scholar]
- Neher E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron. 1998 Mar;20(3):389–399. doi: 10.1016/s0896-6273(00)80983-6. [DOI] [PubMed] [Google Scholar]
- Nägerl U. V., Mody I., Jeub M., Lie A. A., Elger C. E., Beck H. Surviving granule cells of the sclerotic human hippocampus have reduced Ca(2+) influx because of a loss of calbindin-D(28k) in temporal lobe epilepsy. J Neurosci. 2000 Mar 1;20(5):1831–1836. doi: 10.1523/JNEUROSCI.20-05-01831.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pasti L., Carmignoto G., Pozzan T., Battini R., Ferrari S., Lally G., Emson P. C. Cellular calcium handling in brain slices from calbindin D28k-deficient mice. Neuroreport. 1999 Aug 2;10(11):2367–2372. doi: 10.1097/00001756-199908020-00027. [DOI] [PubMed] [Google Scholar]
- Smith P. D., Liesegang G. W., Berger R. L., Czerlinski G., Podolsky R. J. A stopped-flow investigation of calcium ion binding by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Anal Biochem. 1984 Nov 15;143(1):188–195. doi: 10.1016/0003-2697(84)90575-x. [DOI] [PubMed] [Google Scholar]
- Stern M. D. Buffering of calcium in the vicinity of a channel pore. Cell Calcium. 1992 Mar;13(3):183–192. doi: 10.1016/0143-4160(92)90046-u. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
- Veenstra T. D., Johnson K. L., Tomlinson A. J., Naylor S., Kumar R. Determination of calcium-binding sites in rat brain calbindin D28K by electrospray ionization mass spectrometry. Biochemistry. 1997 Mar 25;36(12):3535–3542. doi: 10.1021/bi9628329. [DOI] [PubMed] [Google Scholar]
- Vergara J., Delay M. The use of metallochromic Ca indicators in skeletal muscle. Cell Calcium. 1985 Apr;6(1-2):119–132. doi: 10.1016/0143-4160(85)90039-9. [DOI] [PubMed] [Google Scholar]
- Vergara J., DiFranco M. Imaging of calcium transients during excitation-contraction coupling in skeletal muscle fibers. Adv Exp Med Biol. 1992;311:227–236. doi: 10.1007/978-1-4615-3362-7_16. [DOI] [PubMed] [Google Scholar]