Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1974 Jan;236(2):303–326. doi: 10.1113/jphysiol.1974.sp010436

Two types of neurones in the myenteric plexus of duodenum in the guinea-pig

G D S Hirst, Mollie E Holman, I Spence
PMCID: PMC1350803  PMID: 16992436

Abstract

1. Intracellular recordings have been made from neurones lying in the myenteric plexus of guinea-pig duodenum; some aspects of their membrane properties have been studied by passing current through the intracellular electrode while recording changes in membrane potential.

2. The current—voltage relationship was linear for small changes in membrane potential, input resistances ranging from 125 to 250 MΩ. Larger hyperpolarizing currents (causing changes of 20-40 mV) caused the input resistance to fall.

3. Depolarizing currents of 1 to 10 × 10-10 A initiated action potentials with amplitudes of up to 95 mV.

4. Two types of cell were distinguished when an action potential was initiated. In one group the action potential and undershoot had a form similar to that recorded from other mammalian ganglia. In the second group an action potential was followed by both an undershoot and a prolonged afterhyperpolarization which was associated with a decrease in cell resistance.

5. The two groups of cells were further distinguished by their responses to transmural stimulation. Only those cells which did not show an afterhyperpolarization could be shown to receive a synaptic input.

6. The mechanism by which each cell type generates an action potential was different. The action potentials recorded from cells which had a detectable synaptic input were abolished by tetrodotoxin. In contrast, those recorded from the other type of cells persisted in the presence of tetrodotoxin. Preliminary experiments suggest that during an action potential these cells become permeable to both sodium and calcium ions.

7. Abolition of the calcium component of the action potential in cells which generated an afterhyperpolarization abolished this latter potential.

8. The role of these two groups of cells is discussed.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMBACHE N. Separation of the longitudinal muscle of the rabbit's ileum as a broad sheet. J Physiol. 1954 Aug 27;125(2):53–5P. [PubMed] [Google Scholar]
  2. Adrian R. H., Chandler W. K., Hodgkin A. L. Slow changes in potassium permeability in skeletal muscle. J Physiol. 1970 Jul;208(3):645–668. doi: 10.1113/jphysiol.1970.sp009140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLACKMAN J. G., GINSBORG B. L., RAY C. Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. J Physiol. 1963 Jul;167:374–388. doi: 10.1113/jphysiol.1963.sp007156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BLACKMAN J. G., GINSBORG B. L., RAY C. Synaptic transmission in the sympathetic ganglion of the frog. J Physiol. 1963 Jul;167:355–373. doi: 10.1113/jphysiol.1963.sp007155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BULBRING E., LIN R. C., SCHOFIELD G. An investigation of the peristaltic reflex in relation to anatomical observations. Q J Exp Physiol Cogn Med Sci. 1958 Jan;43(1):26–37. doi: 10.1113/expphysiol.1958.sp001305. [DOI] [PubMed] [Google Scholar]
  6. Blackman J. G., Crowcroft P. J., Devine C. E., Holman M. E., Yonemura K. Transmission from pregnanglionic fibres in the hypogastric nerve to peripheral ganglia of male guinea-pigs. J Physiol. 1969 May;201(3):723–743. doi: 10.1113/jphysiol.1969.sp008784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blackman J. G., Purves R. D. Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J Physiol. 1969 Jul;203(1):173–198. doi: 10.1113/jphysiol.1969.sp008858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
  9. Bülbring E., Tomita T. Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J Physiol. 1967 Apr;189(2):299–315. doi: 10.1113/jphysiol.1967.sp008169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crowcroft P. J., Holman M. E., Szurszewski J. H. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea-pig. J Physiol. 1971 Dec;219(2):443–461. doi: 10.1113/jphysiol.1971.sp009671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crowcroft P. J., Szurszewski J. H. A study of the inferior mesenteric and pelvic ganglia of guinea-pigs with intracellular electrodes. J Physiol. 1971 Dec;219(2):421–441. doi: 10.1113/jphysiol.1971.sp009670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gabella G. Fine structure of the myenteric plexus in the guinea-pig ileum. J Anat. 1972 Jan;111(Pt 1):69–97. [PMC free article] [PubMed] [Google Scholar]
  13. Godfraind J. M., Kawamura H., Krnjević K., Pumain R. Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J Physiol. 1971 May;215(1):199–222. doi: 10.1113/jphysiol.1971.sp009465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HOLMAN M. E. The effect of changes in sodium chloride concentration on the smooth muscle of the guinea-pig's taenia coli. J Physiol. 1957 May 23;136(3):569–584. doi: 10.1113/jphysiol.1957.sp005782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hirst G. D., Spence I. Calcium action potentials in mammalian peripheral neurones. Nat New Biol. 1973 May 9;243(123):54–56. [PubMed] [Google Scholar]
  16. Holman M. E., Hirst G. D., Spence I. Preliminary studies of the neurones of Auerbach's plexus using intracellular microelectrodes. Aust J Exp Biol Med Sci. 1972 Dec;50(7):795–801. doi: 10.1038/icb.1972.76. [DOI] [PubMed] [Google Scholar]
  17. Jacobowitz D. Histochemical studies of the autonomic innervation of the gut. J Pharmacol Exp Ther. 1965 Sep;149(3):358–364. [PubMed] [Google Scholar]
  18. Katz B., Miledi R. Tetrodotoxin and neuromuscular transmission. Proc R Soc Lond B Biol Sci. 1967 Jan 31;167(1006):8–22. doi: 10.1098/rspb.1967.0010. [DOI] [PubMed] [Google Scholar]
  19. MARTIN A. R., PILAR G. DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION. J Physiol. 1963 Sep;168:443–463. doi: 10.1113/jphysiol.1963.sp007202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nishi S., North R. A. Presynaptic action of noradrenaline in the myenteric plexus. J Physiol. 1973 May;231(1):29P–30P. [PubMed] [Google Scholar]
  21. Ohkawa H., Prosser C. L. Electrical activity in myenteric and submucous plexuses of cat intestine. Am J Physiol. 1972 Jun;222(6):1412–1419. doi: 10.1152/ajplegacy.1972.222.6.1412. [DOI] [PubMed] [Google Scholar]
  22. Ohkawa H., Prosser C. L. Functions of neurons in enteric plexuses of cat intestine. Am J Physiol. 1972 Jun;222(6):1420–1426. doi: 10.1152/ajplegacy.1972.222.6.1420. [DOI] [PubMed] [Google Scholar]
  23. Paton W. D., Vizi E. S. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Br J Pharmacol. 1969 Jan;35(1):10–28. doi: 10.1111/j.1476-5381.1969.tb07964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paton W. D., Zar M. A. The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol. 1968 Jan;194(1):13–33. doi: 10.1113/jphysiol.1968.sp008392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wood J. D. Electrical activity from single neurons in Auerbach's plexus. Am J Physiol. 1970 Jul;219(1):159–169. doi: 10.1152/ajplegacy.1970.219.1.159. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES