Abstract
Neural stimuli associated with traumatic events can readily become conditioned so as to reinstate the memory of the original trauma. These conditioned fear responses can last a lifetime and may be especially resistant to extinction. A large amount of data from many different laboratories indicate that the amygdala plays a crucial role in conditioned fear. The amygdala receives information from all sensory modalities and projects to a variety of hypothalamic and brainstem target areas known to be critically involved in specific signs that are used to define fear and anxiety. Electrical stimulation of the amygdala elicits a pattern of behaviours that mimic natural or conditioned states of fear. Lesions of the amygdala block innate or conditioned fear and local infusion of drugs into the amygdala have anxiolytic effects in several behavioural tests. Excitatory amino acid receptors in the amygdala are critical for the acquisition, expression and extinction of conditioned fear.
Full Text
The Full Text of this article is available as a PDF (625.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN J. S., KALISH H. I., FARBER I. E. Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol. 1951 May;41(5):317–328. doi: 10.1037/h0060166. [DOI] [PubMed] [Google Scholar]
- Campeau S., Davis M. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci. 1995 Mar;15(3 Pt 2):2312–2327. doi: 10.1523/JNEUROSCI.15-03-02312.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campeau S., Davis M. Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J Neurosci. 1995 Mar;15(3 Pt 2):2301–2311. doi: 10.1523/JNEUROSCI.15-03-02301.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campeau S., Miserendino M. J., Davis M. Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behav Neurosci. 1992 Jun;106(3):569–574. doi: 10.1037//0735-7044.106.3.569. [DOI] [PubMed] [Google Scholar]
- Candland D. K., Nagy Z. M. The open field: some comparative data. Ann N Y Acad Sci. 1969 Jul 30;159(3):831–851. doi: 10.1111/j.1749-6632.1969.tb12982.x. [DOI] [PubMed] [Google Scholar]
- Canteras N. S., Swanson L. W. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol. 1992 Oct 8;324(2):180–194. doi: 10.1002/cne.903240204. [DOI] [PubMed] [Google Scholar]
- Costall B., Jones B. J., Kelly M. E., Naylor R. J., Tomkins D. M. Exploration of mice in a black and white test box: validation as a model of anxiety. Pharmacol Biochem Behav. 1989 Mar;32(3):777–785. doi: 10.1016/0091-3057(89)90033-6. [DOI] [PubMed] [Google Scholar]
- Crawley J. N. Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav. 1981 Nov;15(5):695–699. doi: 10.1016/0091-3057(81)90007-1. [DOI] [PubMed] [Google Scholar]
- Crawley J., Goodwin F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav. 1980 Aug;13(2):167–170. doi: 10.1016/0091-3057(80)90067-2. [DOI] [PubMed] [Google Scholar]
- Cullinan W. E., Herman J. P., Watson S. J. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol. 1993 Jun 1;332(1):1–20. doi: 10.1002/cne.903320102. [DOI] [PubMed] [Google Scholar]
- Davis M. Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol Ther. 1990;47(2):147–165. doi: 10.1016/0163-7258(90)90084-f. [DOI] [PubMed] [Google Scholar]
- Davis M., Astrachan D. I. Conditioned fear and startle magnitude: effects of different footshock or backshock intensities used in training. J Exp Psychol Anim Behav Process. 1978 Apr;4(2):95–103. doi: 10.1037//0097-7403.4.2.95. [DOI] [PubMed] [Google Scholar]
- Davis M., Cassella J. V., Kehne J. H. Serotonin does not mediate anxiolytic effects of buspirone in the fear-potentiated startle paradigm: comparison with 8-OH-DPAT and ipsapirone. Psychopharmacology (Berl) 1988;94(1):14–20. doi: 10.1007/BF00735873. [DOI] [PubMed] [Google Scholar]
- Davis M. Neurochemical modulation of sensory-motor reactivity: acoustic and tactile startle reflexes. Neurosci Biobehav Rev. 1980 Summer;4(2):241–263. doi: 10.1016/0149-7634(80)90016-0. [DOI] [PubMed] [Google Scholar]
- Davis M. Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci. 1986 Dec;100(6):814–824. doi: 10.1037//0735-7044.100.6.814. [DOI] [PubMed] [Google Scholar]
- Davis M., Schlesinger L. S., Sorenson C. A. Temporal specificity of fear conditioning: effects of different conditioned stimulus-unconditioned stimulus intervals on the fear-potentiated startle effect. J Exp Psychol Anim Behav Process. 1989 Oct;15(4):295–310. [PubMed] [Google Scholar]
- Davis M. Sensitization of the acoustic startle reflex by footshock. Behav Neurosci. 1989 Jun;103(3):495–503. [PubMed] [Google Scholar]
- Davis M. The role of the amygdala in fear and anxiety. Annu Rev Neurosci. 1992;15:353–375. doi: 10.1146/annurev.ne.15.030192.002033. [DOI] [PubMed] [Google Scholar]
- DeFries J. C., Hegmann J. P., Weir M. W. Open-field behavior in mice: evidence for a major gene effect mediated by the visual system. Science. 1966 Dec 23;154(3756):1577–1579. doi: 10.1126/science.154.3756.1577. [DOI] [PubMed] [Google Scholar]
- Dunn A. J., Berridge C. W. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev. 1990 May-Aug;15(2):71–100. doi: 10.1016/0165-0173(90)90012-d. [DOI] [PubMed] [Google Scholar]
- Eison A. S., Eison M. S., Stanley M., Riblet L. A. Serotonergic mechanisms in the behavioral effects of buspirone and gepirone. Pharmacol Biochem Behav. 1986 Mar;24(3):701–707. doi: 10.1016/0091-3057(86)90577-0. [DOI] [PubMed] [Google Scholar]
- Ellis M. E., Kesner R. P. The noradrenergic system of the amygdala and aversive information processing. Behav Neurosci. 1983 Jun;97(3):399–415. doi: 10.1037//0735-7044.97.3.399. [DOI] [PubMed] [Google Scholar]
- File S. E., Hyde J. R. Can social interaction be used to measure anxiety? Br J Pharmacol. 1978 Jan;62(1):19–24. doi: 10.1111/j.1476-5381.1978.tb07001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- File S. E., Peet L. A. The sensitivity of the rat corticosterone response to environmental manipulations and to chronic chlordiazepoxide treatment. Physiol Behav. 1980 Nov;25(5):753–758. doi: 10.1016/0031-9384(80)90379-0. [DOI] [PubMed] [Google Scholar]
- Gardner C. R. Distress vocalization in rat pups. A simple screening method for anxiolytic drugs. J Pharmacol Methods. 1985 Nov;14(3):181–187. doi: 10.1016/0160-5402(85)90031-2. [DOI] [PubMed] [Google Scholar]
- Groves P. M., Thompson R. F. Habituation: a dual-process theory. Psychol Rev. 1970 Sep;77(5):419–450. doi: 10.1037/h0029810. [DOI] [PubMed] [Google Scholar]
- Henke P. G. The centromedial amygdala and gastric pathology in rats. Physiol Behav. 1980 Jul;25(1):107–112. doi: 10.1016/0031-9384(80)90189-4. [DOI] [PubMed] [Google Scholar]
- Hitchcock J. M., Davis M. Efferent pathway of the amygdala involved in conditioned fear as measured with the fear-potentiated startle paradigm. Behav Neurosci. 1991 Dec;105(6):826–842. doi: 10.1037//0735-7044.105.6.826. [DOI] [PubMed] [Google Scholar]
- Hitchcock J., Davis M. Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci. 1986 Feb;100(1):11–22. doi: 10.1037//0735-7044.100.1.11. [DOI] [PubMed] [Google Scholar]
- Hogg S., File S. E. Responders and nonresponders to cat odor do not differ in other tests of anxiety. Pharmacol Biochem Behav. 1994 Sep;49(1):219–222. doi: 10.1016/0091-3057(94)90479-0. [DOI] [PubMed] [Google Scholar]
- Ison J. R., Hammond G. R. Modification of the startle reflex in the rat by changes in the auditory and visual environments. J Comp Physiol Psychol. 1971 Jun;75(3):435–452. doi: 10.1037/h0030934. [DOI] [PubMed] [Google Scholar]
- Kehne J. H., Cassella J. V., Davis M. Anxiolytic effects of buspirone and gepirone in the fear-potentiated startle paradigm. Psychopharmacology (Berl) 1988;94(1):8–13. doi: 10.1007/BF00735872. [DOI] [PubMed] [Google Scholar]
- Kim M., Campeau S., Falls W. A., Davis M. Infusion of the non-NMDA receptor antagonist CNQX into the amygdala blocks the expression of fear-potentiated startle. Behav Neural Biol. 1993 Jan;59(1):5–8. doi: 10.1016/0163-1047(93)91075-x. [DOI] [PubMed] [Google Scholar]
- LeDoux J. E., Iwata J., Cicchetti P., Reis D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci. 1988 Jul;8(7):2517–2529. doi: 10.1523/JNEUROSCI.08-07-02517.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee E. H., Lin Y. P., Yin T. H. Effects of lateral and medial septal lesions on various activity and reactivity measures in rats. Physiol Behav. 1988;42(1):97–102. doi: 10.1016/0031-9384(88)90267-3. [DOI] [PubMed] [Google Scholar]
- Liang K. C., Juler R. G., McGaugh J. L. Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res. 1986 Mar 12;368(1):125–133. doi: 10.1016/0006-8993(86)91049-8. [DOI] [PubMed] [Google Scholar]
- Liang K. C., Melia K. R., Campeau S., Falls W. A., Miserendino M. J., Davis M. Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects of corticotropin-releasing factor on the acoustic startle reflex. J Neurosci. 1992 Jun;12(6):2313–2320. doi: 10.1523/JNEUROSCI.12-06-02313.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang K. C., Melia K. R., Miserendino M. J., Falls W. A., Campeau S., Davis M. Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J Neurosci. 1992 Jun;12(6):2303–2312. doi: 10.1523/JNEUROSCI.12-06-02303.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lister R. G. Ethologically-based animal models of anxiety disorders. Pharmacol Ther. 1990;46(3):321–340. doi: 10.1016/0163-7258(90)90021-s. [DOI] [PubMed] [Google Scholar]
- Livesey P. J., Egger G. J. Age as a factor in open-field responsiveness in the white rat. J Comp Physiol Psychol. 1970 Oct;73(1):93–99. doi: 10.1037/h0030018. [DOI] [PubMed] [Google Scholar]
- Mansbach R. S., Geyer M. A. Blockade of potentiated startle responding in rats by 5-hydroxytryptamine1A receptor ligands. Eur J Pharmacol. 1988 Nov 8;156(3):375–383. doi: 10.1016/0014-2999(88)90283-x. [DOI] [PubMed] [Google Scholar]
- Melia K. R., Davis M. Effects of septal lesions on fear-potentiated startle, and on the anxiolytic effects of buspirone and diazepam. Physiol Behav. 1991 Mar;49(3):603–611. doi: 10.1016/0031-9384(91)90286-w. [DOI] [PubMed] [Google Scholar]
- Melia K. R., Sananes C. B., Davis M. Lesions of the central nucleus of the amygdala block the excitatory effects of septal ablation on the acoustic startle reflex. Physiol Behav. 1992 Jan;51(1):175–180. doi: 10.1016/0031-9384(92)90220-v. [DOI] [PubMed] [Google Scholar]
- Miserendino M. J., Sananes C. B., Melia K. R., Davis M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature. 1990 Jun 21;345(6277):716–718. doi: 10.1038/345716a0. [DOI] [PubMed] [Google Scholar]
- Onaivi E. S., Martin B. R. Neuropharmacological and physiological validation of a computer-controlled two-compartment black and white box for the assessment of anxiety. Prog Neuropsychopharmacol Biol Psychiatry. 1989;13(6):963–976. doi: 10.1016/0278-5846(89)90047-x. [DOI] [PubMed] [Google Scholar]
- Pellow S., Chopin P., File S. E., Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985 Aug;14(3):149–167. doi: 10.1016/0165-0270(85)90031-7. [DOI] [PubMed] [Google Scholar]
- Rosen J. B., Davis M. Enhancement of acoustic startle by electrical stimulation of the amygdala. Behav Neurosci. 1988 Apr;102(2):195-202, 324. doi: 10.1037//0735-7044.102.2.195. [DOI] [PubMed] [Google Scholar]
- Rosen J. B., Hitchcock J. M., Sananes C. B., Miserendino M. J., Davis M. A direct projection from the central nucleus of the amygdala to the acoustic startle pathway: anterograde and retrograde tracing studies. Behav Neurosci. 1991 Dec;105(6):817–825. doi: 10.1037/0735-7044.105.6.817. [DOI] [PubMed] [Google Scholar]
- Sananes C. B., Davis M. N-methyl-D-aspartate lesions of the lateral and basolateral nuclei of the amygdala block fear-potentiated startle and shock sensitization of startle. Behav Neurosci. 1992 Feb;106(1):72–80. doi: 10.1037//0735-7044.106.1.72. [DOI] [PubMed] [Google Scholar]
- Sarter M., Markowitsch H. J. Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci. 1985 Apr;99(2):342–380. doi: 10.1037//0735-7044.99.2.342. [DOI] [PubMed] [Google Scholar]
- Swerdlow N. R., Geyer M. A., Vale W. W., Koob G. F. Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology (Berl) 1986;88(2):147–152. doi: 10.1007/BF00652231. [DOI] [PubMed] [Google Scholar]
- Treit D., Fundytus M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav. 1988 Dec;31(4):959–962. doi: 10.1016/0091-3057(88)90413-3. [DOI] [PubMed] [Google Scholar]
- Treit D., Pesold C., Rotzinger S. Dissociating the anti-fear effects of septal and amygdaloid lesions using two pharmacologically validated models of rat anxiety. Behav Neurosci. 1993 Oct;107(5):770–785. doi: 10.1037//0735-7044.107.5.770. [DOI] [PubMed] [Google Scholar]
- Valle F. P. Effects of strain, sex, and illumination on open-field behavior of rats. Am J Psychol. 1970 Mar;83(1):103–111. [PubMed] [Google Scholar]
- Walsh R. N., Cummins R. A. The Open-Field Test: a critical review. Psychol Bull. 1976 May;83(3):482–504. [PubMed] [Google Scholar]
- Wedeking P., Carlton P. L. Habituation and sensitization in the modulation of reflex amplitude. Physiol Behav. 1979 Jan;22(1):57–62. doi: 10.1016/0031-9384(79)90404-9. [DOI] [PubMed] [Google Scholar]