Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2011 Sep 29;27(5):325. doi: 10.1007/s12264-011-1531-5

Increased basal plasma brain-derived neurotrophic factor levels in sprint runners

短跑运动员血浆中脑源性神经营养因子水平较普通人群显著升高

Paulo Roberto Correia 1, Fulvio Alexandre Scorza 2, Sérgio Gomes da Silva 1, Aline Pansani 2, Michelle Toscano-Silva 1, Antonio Carlos de Almeida 3, Ricardo Mario Arida 1,
PMCID: PMC5560316  PMID: 21934728

Abstract

Objective

Exercise is known to enhance circulating brain-derived neurotrophic factor (BDNF) levels in healthy humans. BDNF changes have been measured in endurance but not in strength exercise. The present study aimed to investigate whether anaerobic activity such as sprinting differentially alters basal plasma BDNF concentration.

Methods

Brazilian sprinters (100 m) at either the international (Olympics and Outdoor World Championships) (n = 14) or the domestic level (n = 8), and sedentary subjects (n = 15), were recruited. Plasma BDNF concentrations were analyzed by enzyme-linked immunosorbent assay.

Results

The basal plasma BDNF concentrations were significantly higher in the international and the domestic sprinters than in the sedentary subjects. In addition, sprinters at the international level had higher plasma BDNF concentrations than those at the domestic level.

Conclusion

Our findings suggest that increased basal plasma BDNF level is related to enhanced exercise performance.

Keywords: brain-derived neurotrophic factor, physical exercise, sprint, plasma, brain, human

References

  • [1].Skup M.H. BDNF and NT-3 widen the scope of neurotrophin activity: pharmacological implications. Acta Neurobiol Exp (Wars) 1994;54:81–94. [PubMed] [Google Scholar]
  • [2].Lessmann V., Brigadski T. Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neurosci Res. 2009;65:11–22. doi: 10.1016/j.neures.2009.06.004. [DOI] [PubMed] [Google Scholar]
  • [3].Nakahashi T., Fujimura H., Altar C.A., Li J., Kambayashi J., Tandon N.N., et al. Vascular endothelial cells synthesize and secrete brainderived neurotrophic factor. FEBS Lett. 2000;470:113–117. doi: 10.1016/S0014-5793(00)01302-8. [DOI] [PubMed] [Google Scholar]
  • [4].Matthews V.B., Astrom M.B., Chan M.H., Bruce C.R., Krabbe K.S., Prelovsek O., et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409–1418. doi: 10.1007/s00125-009-1364-1. [DOI] [PubMed] [Google Scholar]
  • [5].Kerschensteiner M., Gallmeier E., Behrens L., Leal V.V., Misgeld T., Klinkert W.E., et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999;189:865–870. doi: 10.1084/jem.189.5.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Pan W., Banks W.A., Fasold M.B., Bluth J., Kastin A.J. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37:1553–1561. doi: 10.1016/S0028-3908(98)00141-5. [DOI] [PubMed] [Google Scholar]
  • [7].Knaepen K., Goekint M., Heyman E.M., Meeusen R. Neuroplasticity-exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40:765–801. doi: 10.2165/11534530-000000000-00000. [DOI] [PubMed] [Google Scholar]
  • [8].Oliff H.S., Berchtold N.C., Isackson P., Cotman C.W. Exercise-induced regulation of brain derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 1998;61:147–153. doi: 10.1016/S0169-328X(98)00222-8. [DOI] [PubMed] [Google Scholar]
  • [9].Gold S.M., Schulz K.H., Hartmann S., Mladek M., Lang U.E., Hellweg R., et al. Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol. 2003;138:99–105. doi: 10.1016/S0165-5728(03)00121-8. [DOI] [PubMed] [Google Scholar]
  • [10].Vega S.R., Struder H.K., Wahrmann B.V., Schmidt A., Bloch W., Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121:59–65. doi: 10.1016/j.brainres.2006.08.105. [DOI] [PubMed] [Google Scholar]
  • [11].Ferris L.T., Williams J.S., Shen C.L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39:728–734. doi: 10.1249/mss.0b013e31802f04c7. [DOI] [PubMed] [Google Scholar]
  • [12].Tang S.W., Chu E., Hui T., Helmeste D., Law C. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neurosci Lett. 2008;431:62–65. doi: 10.1016/j.neulet.2007.11.019. [DOI] [PubMed] [Google Scholar]
  • [13].Rasmussen P., Brassard P., Adser H., Pedersen M.V., Leick L., Hart E., et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94:1062–1069. doi: 10.1113/expphysiol.2009.048512. [DOI] [PubMed] [Google Scholar]
  • [14].Schiffer T., Schulte S., Hollmann W., Bloch W., Strüder H.K. Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res. 2009;41:250–254. doi: 10.1055/s-0028-1093322. [DOI] [PubMed] [Google Scholar]
  • [15].Goekint M., De Pauw K., Roelands B., Njemini R., Bautmans I., Mets T., et al. Strength training does not influence serum brain-derived neurotrophic factor. Eur J Appl Physiol. 2010;110:285–293. doi: 10.1007/s00421-010-1461-3. [DOI] [PubMed] [Google Scholar]
  • [16].Seifert T., Brassard P., Wissenberg M., Rasmussen P., Nordby P., Stallknecht B. Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. 2010;298:R372–377. doi: 10.1152/ajpregu.00525.2009. [DOI] [PubMed] [Google Scholar]
  • [17].Correia P.R., Pansani A., Machado F., Andrade M., Silva A.C., Scorza F.A., et al. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels. Clinics (São Paulo) 2010;65(11):1123–1126. doi: 10.1590/S1807-59322010001100012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [18].Zoladz J.A., Pilc A., Majerczak J., Grandys M., Zapart-Bukowska J., Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 2008;59:119–132. [PubMed] [Google Scholar]
  • [19].Winter B., Breitenstein C., Mooren F.C., Voelker K., Fobker M., Lechtermann A., et al. High impact running improves learning. Neurobiol Learn Mem. 2007;87:597–609. doi: 10.1016/j.nlm.2006.11.003. [DOI] [PubMed] [Google Scholar]
  • [20].Chan K.L., Tong K.Y., Yip S.P. Relationship of serum brain-derived neurotrophic factor (BDNF) and health-related lifestyle in healthy human subjects. Neurosci Lett. 2008;447:124–128. doi: 10.1016/j.neulet.2008.10.013. [DOI] [PubMed] [Google Scholar]
  • [21].Nofuji Y., Suwa M., Moriyama Y., Nakano H., Ichimiya A., Nishichi R., et al. Decreased serum brain-derived neurotrophic factor in trained men. Neurosci Lett. 2008;437:29–32. doi: 10.1016/j.neulet.2008.03.057. [DOI] [PubMed] [Google Scholar]
  • [22].Stoggl T., Lindinger S., Muller E. Analysis of a simulated sprint competition in classical cross country skiing. Scand J Med Sci Sports. 2007;17:362–372. doi: 10.1111/j.1600-0838.2006.00589.x. [DOI] [PubMed] [Google Scholar]
  • [23].Stoggl T., Lindinger S., Muller E. Evaluation of an upper-body strength test for the cross-country skiing sprint. Med Sci Sports Exerc. 2007;39:1160–1169. doi: 10.1249/mss.0b013e3180537201. [DOI] [PubMed] [Google Scholar]
  • [24].Spencer M.R., Gastin P.B. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33:157–162. doi: 10.1097/00005768-200101000-00024. [DOI] [PubMed] [Google Scholar]
  • [25].Rhodes J.S., Van Praag H., Jeffrey S., Girard I., Mitchell G., Garland T., Jr, et al. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci. 2003;117:1006–1016. doi: 10.1037/0735-7044.117.5.1006. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES